• 公告ID (KylinSec-SA-2024-2507)

摘要:

In the Linux kernel, the following vulnerability has been resolved:

x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer

Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state. The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.

__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.

If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.

Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.

[1] Frequent readers of the errata lists might imagine "complex
microarchitectural conditions".

安全等级: Low

公告ID: KylinSec-SA-2024-2507

发布日期: 2024年5月31日

关联CVE: CVE-2021-47226  

  • 详细介绍

1. 漏洞描述

   

In the Linux kernel, the following vulnerability has been resolved:

x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer

Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state. The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.

__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.

If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.

Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.

[1] Frequent readers of the errata lists might imagine "complex
microarchitectural conditions".

2. 影响范围

cve名称 产品 组件 是否受影响
CVE-2021-47226 KY3.4-4A kernel Unaffected
CVE-2021-47226 KY3.4-5 kernel Unaffected
CVE-2021-47226 KY3.5.1 kernel Unaffected
CVE-2021-47226 V6 kernel Unaffected

3. 影响组件

    无

4. 修复版本

    无

5. 修复方法

   无

6. 下载链接

    无
上一篇:KylinSec-SA-2024-2506 下一篇:KylinSec-SA-2024-2508